Direct demonstration of a physiological role for carbon monoxide in olfactory receptor neurons.

نویسندگان

  • T Ingi
  • G V Ronnett
چکیده

Recent evidence suggests that, like nitric oxide (NO), carbon monoxide (CO), another activator of soluble guanylyl cyclase, may serve as an intercellular messenger in the brain. Heme oxygenase, which converts heme to biliverdin and CO, is abundantly expressed in the brain and is localized to discrete neuronal populations. However, evidence for the actual generation of CO by neurons is lacking. Heme oxygenase-2 immunoreactivity is abundantly present in olfactory receptor neurons where it essentially colocalizes with immunoreactivity to soluble guanylyl cyclase, the target of CO action. To examine the generation of CO by neurons, we measured CO production directly and determined its relationship to cyclic GMP levels in cultured rat olfactory receptor neurons. This system has the advantage of not having measurable NO production, which could confound results since NO is a more potent activator of guanylyl cyclase than CO. Metabolic labeling experiments permitted the direct measurement of 14CO production by neurons in vitro. CO release parallels endogenous cyclic GMP concentrations with its peak at the immature stage of neuronal differentiation in culture. Cyclic GMP production is inhibited by zinc protoporphyrin-9 and zinc deuteroporphyrin IX 2,4-bis glycol, inhibitors of heme oxygenase, indicating that CO is an endogenous regulator of soluble guanylyl cyclase activities in these cells. Transforming growth factor-beta 2, an olfactory neurogenic factor, specifically shows a negative effect on CO release in olfactory receptor neurons. These results indicate that CO may serve as a gaseous neuronal messenger linked to cyclic GMP production and suggests its involvement in developmental processes of the olfactory receptor neuron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The regulation of heme turnover and carbon monoxide biosynthesis in cultured primary rat olfactory receptor neurons.

Heme oxygenase (HO) converts heme to carbon monoxide (CO) and biliverdin, which is metabolized rapidly to bilirubin. CO is implicated as an intercellular messenger, whereas bilirubin could function as an antioxidant. These cellular functions differ significantly from those of HO in peripheral tissues, in which it degrades heme from senescent erythrocytes, suggesting that the regulation of HO ma...

متن کامل

Modeling of carbon monoxide dispersion around the urban tunnel portals

The aim of this study is to investigate the problems caused by discharge of polluted air from tunnels into the environment with a specific focus on residential areas. In city tunnels, portal or stacks, pollutant management is a big challenge. Nowadays, air quality management, particularly in urban tunnels, is considered as a part of the ventilation system design. The goal is to see the environm...

متن کامل

Identification of a long-lasting form of odor adaptation that depends on the carbon Monoxide/cGMP second-messenger system.

The diffusible messenger carbon monoxide (CO) has been proposed to mediate endogenous cyclic guanosine 3',5'-monophosphate (cGMP) formation and sensory adaptation in vertebrate olfactory receptor neurons (ORNs). We have identified and characterized a long-lasting form of odor response adaptation (LLA) that operates at the level of isolated salamander ORNs and does not require any interactions f...

متن کامل

Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells.

Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regula...

متن کامل

The cellular and molecular basis of odor adaptation.

An important recent advance in the understanding of odor adaptation has come from the discovery that complex mechanisms of odor adaptation already take place at the earliest stage of the olfactory system, in the olfactory cilia. At least two rapid forms and one persistent form of odor adaptation coexist in vertebrate olfactory receptor neurons. These three different adaptation phenomena can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 12  شماره 

صفحات  -

تاریخ انتشار 1995